On September 15th, NOAA researchers at Pacific Marine Environmental Laboratory (PMEL) worked with their colleagues at the University of Alaska Fairbanks (UAF) to recover three ocean gliders in the Northern Gulf of Alaska where they have been operating for the past four and half months. This mission, which was the longest ocean acidification glider operation ever conducted, was designed to better understand the impacts that glacial runoff and other biogeochemical processes have on ocean acidification in remote access, high-latitude regions.
Two carbon wave gliders, which ride at the surface of the ocean, provided surface measurements of carbon dioxide (CO2) and dissolved oxygen concentrations as well as temperature and salinity data (Plot 1). Over the course of the deployment, the two surface gliders covered more than 6,700 km and made 4,757 measurements of CO2 in the air and seawater.
Simultaneously, a subsurface Slocum glider made over 5,400 dives through the water column down to 200 m, collecting 404,912 measurements of temperature, salinity and dissolved oxygen (Plot 2) while covering a horizontal distance of over 2,700 km along the continental shelf. All of the gliders were controlled remotely and in real-time from Seattle, WA using new interface software that can be run from any laptop or handheld device, allowing the glider pilots more flexibility during operations.
During the deployment, preliminary data from all three gliders was transmitted back to PMEL where it was analyzed and used for dynamic mission planning. This allowed the two lead scientists, Dr. Jeremy Mathis at PMEL and Dr. Wiley Evans at UAF to modify the tracks of each glider to best capture changing ocean parameters throughout the spring and summer. In the coming months scientists will process and try to understand all of the data, but this mission has proven that autonomous gliders are and will be a critical component of NOAA’s mission to gather environmental intelligence in the future.